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POLARIZATION: CONCEPTS, MEASUREMENT, ESTIMATION

BY JEAN-YVES DUCLOS, JOAN ESTEBAN, AND DEBRAJ RAY1

We develop the measurement theory of polarization for the case in which income
distributions can be described using density functions. The main theorem uniquely
characterizes a class of polarization measures that fits into what we call the “identity-
alienation” framework, and simultanously satisfies a set of axioms. Second, we provide
sample estimators of population polarization indices that can be used to compare po-
larization across time or entities. Distribution-free statistical inference results are also
used in order to ensure that the orderings of polarization across entities are not simply
due to sampling noise. An illustration of the use of these tools using data from 21 coun-
tries shows that polarization and inequality orderings can often differ in practice.
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1. INTRODUCTION

INITIATED BY ESTEBAN AND RAY (1991, 1994), Foster and Wolfson (1992),
and Wolfson (1994), there has been a recent upsurge of interest in the mea-
surement of polarization2 and in the use of such measures as a correlate of dif-
ferent aspects of socioeconomic performance. It seems fairly widely accepted
that polarization is a concept that is distinct from inequality, and that—at least
in principle—it could be connected with several aspects of social, economic,
and political change.3

Following Esteban and Ray (1991, 1994), we rely almost exclusively on what
might be called the identification-alienation framework. The idea is simple: po-
larization is related to the alienation that individuals and groups feel from one
another, but such alienation is fuelled by notions of within-group identity. In con-
centrating on such phenomena, we do not mean to suggest that instances in
which a single isolated individual runs amok with a machine gun are rare, or

1This research was funded by the Pew Charitable Trusts, CRSH, FQRSC, the Chair of Canada
in Social Policies and Human Resources, and National Science Foundation 0241070 (Ray).
Duclos and Ray thank the Instituto de Análisis Económico (CSIC) for hospitality during the
startup phase of this project. Esteban is a member of Barcelona Economics and thanks the sup-
port from the Generalitat de Catalunya, the European Commission, the Instituto de Estudios
Fiscales, and the MCYT. We thank Oliver Linton, Patrick Richard, a coeditor, and two anony-
mous referees for useful comments. Finally, we are grateful to Nicolas Beaulieu for his excellent
research assistance.

2See Esteban and Ray (1991, 1994), Foster and Wolfson (1992), Wolfson (1994, 1997), Alesina
and Spolaore (1997), Quah (1997), Wang and Tsui (2000), Esteban, Gradín, and Ray (1998),
Chakravarty and Majumder (2001), Zhang and Kanbur (2001), and Rodríguez and Salas (2002).

3See, for instance, D’Ambrosio and Wolff (2001), Collier and Hoeffler (2001), Fajnzylber,
Lederman, and Loayza (2000), Garcia-Montalvo and Reynal-Querol (2002), Gradín (2000),
Knack and Keefer (2001), Milanovic (2000), Quah (1997), and Reynal-Querol (2002). See also
Esteban and Ray (1999) for a formal analysis of the connections between polarization and the
equilibrium level of conflict in a model of strategic interaction.
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that they are unimportant in the larger scheme of things. It is just that these are
not the objects of our enquiry. We are interested in the correlates of organized,
large-scale social unrest—strikes, demonstrations, processions, widespread vi-
olence, and revolt or rebellion. Such phenomena thrive on differences, to be
sure. But they cannot exist without notions of group identity either.

This brief discussion immediately suggests that inequality, inasmuch as it
concerns itself with interpersonal alienation, captures but one aspect of po-
larization. To be sure, there are some obvious changes that would be branded
as both inequality- and polarization-enhancing. For instance, if two income
groups are further separated by increasing economic distance, inequality and
polarization would presumably both increase. However, local equalizations of
income differences at two different ranges of the income distribution will most
likely lead to two better-defined groups—each with a clearer sense of itself and
the other. In this case, inequality will have come down but polarization may be
on the rise.

The purpose of this paper is two-fold. First, we develop the measurement
theory of polarization for the case in which the relevant distributions can be
described by density functions. There are many such instances, the most impor-
tant being income, consumption, and wealth—regrouped under “income” for
short. The reason for doing so is simple: with sample data aggregated along in-
come intervals, it is unclear how to provide a statistically satisfactory account of
whether distributive measures (based on such data) are significantly different
across time or entities. Indeed, a rapidly burgeoning literature on the statistics
of inequality and poverty measurement shows how to construct appropriate
statistical tests for such measures using disaggregated data (see, e.g., Beach
and Davidson (1983), Beach and Richmond (1985), Bishop, Chakraborti, and
Thistle (1989), Kakwani (1993), Anderson (1996), and Davidson and Duclos
(1997, 2000)). A rigorous axiomatic development of the polarization concept
in the “density case” is then a prerequisite for proper statistical examination of
polarization.

In this paper we concentrate on the axiomatics and estimation of “pure
income polarization,” that is, of indices of polarization for which individuals
identify themselves only with those with similar income levels. (However, Sec-
tion 4 does contain several preliminary remarks on the broader concept of
“social polarization.”) With this settled, we turn to issues of estimation. The
main problem is how to estimate the size of the groups to which individuals
belong. Again, using arbitrary income intervals would appear somewhat unsat-
isfactory. Instead, we estimate group size nonparametrically using kernel den-
sity procedures. A natural estimator of the polarization indices is then given
by substituting the distribution function by the empirical distribution function.
Assuming that we are using a random sample of independently and identically
distributed observations of income, the resulting estimator has a limiting nor-
mal distribution with parameters that can be estimated free of assumptions on
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the true (but unknown) distribution of incomes. Distribution-free statistical in-
ference can then be applied to ensure that the orderings of polarization across
entities are not simply due to sampling noise.

It is useful to locate this paper in the context of the earlier step in the mea-
surement of polarization in Esteban and Ray (1994)—ER from now on. The
measure derived in ER was based on a discrete, finite set of income groupings
located in a continuous ambient space of possible income values. This gener-
ated two major problems, one conceptual and the other practical. At the con-
ceptual level we have the drawback that the measure presents an unpleasant
discontinuity. This is precisely due to the fact that ER is based on a popula-
tion distributed over a discrete and distinct number of points.4 The practical
difficulty is that the population is assumed to have already been bunched in
the relevant groups. This feature rendered the measure of little use for many
interesting problems.5 As mentioned above, the present paper addresses both
problems and provides what we hope is a useable measure.

In addition, the main axioms that we use to characterize income polarization
are substantially different from ER (though they are similar in spirit). In large
part, this is due to the fact that we are dealing with a completely different
domain (spaces of densities). We therefore find it of interest that these new
axioms end up characterizing a measure of polarization that turns out to be
the natural extension of ER to the case of continuous distributions. At a deeper
level, there are, however, important differences, such as the different bounds
on the “polarization-sensitivity” parameter α that are obtained.

In Section 2 we axiomatically characterize a measure of pure income polar-
ization and examine its properties; this is the conceptual heart of the paper.
We then turn in Section 3 to estimation and inference issues for polarization
measures and subsequently illustrate the axiomatic and statistical results using
data drawn from the Luxembourg Income Study (LIS) data sets for 21 coun-
tries. We compute the Gini coefficient and the polarization measure for these
countries for years in Wave 3 (1989–1992) and Wave 4 (1994–1997), and find
inter alia that the two indices furnish distinct information on the shape of the
distributions. Section 4 summarizes the results and discusses an important ex-
tension. All proofs are relegated to the Appendix.

2. MEASURING INCOME POLARIZATION

The purpose of this section is to proceed towards a full axiomatization of
income polarization.

4ER (Section 4, p. 846) mention this problem.
5In Esteban, Gradín, and Ray (1998) we presented a statistically reasonable way to bunch the

population in groups and thus make the ER measure operational. Yet, the number of groups had
to be taken as exogenous and the procedure altogether had no clear efficiency properties.
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2.1. Starting Point

The domain under consideration is the class of all continuous (unnormal-
ized) densities in R+, with their integrals corresponding to various population
sizes. Let f be such a density; we are interested in its polarization P(f ). We first
describe the notions of “alienation” and “identification” for each individual
with income located in the support of f .

We presume that an individual located at x feels alienation vis-a-vis another
located at y , and that this alienation is monotonic in distance |x − y|. This
notion is commonplace in the literature on the conceptual foundations of in-
equality (see, e.g., Sen (1997)).

At the same time, the “identity-alienation framework” we adopt (referred
to as IA henceforth) emphasizes that alienation per se is not the end of the
story: for alienation to be translated into effective voice, action, or protest, the
individual must—to greater or lesser degree—identify with others in society. In
this paper, we presume that an individual located at income x experiences a
sense of identification that depends on the density at x, f (x).

Taken in a broader context, the identification assumption is obviously quite
specific. For instance, one might consider the possibility that individuals have
a nondegenerate “window of identification” (though the foundations for the
width of such an identification window appear unclear). We address this issue
(and others) in our discussion of identification in Section 2.4, but recognize
that a full analysis of the behavioral foundations of identification is beyond the
scope of this paper.

As in ER, we are interested in the effective antagonism of x towards y (un-
der f ). In its most abstract form, we may depict this as some nonnegative
function

T(i� a)�

where i = f (x) and a = |x − y|. It is assumed that T is increasing in its
second argument and that T(i�0) = T(0� a) = 0, just as in ER. (This last
condition asserts that while the consequences of an isolated individual’s
sense of alienation might be important, this is not the focus of our exer-
cise.) We take polarization to be proportional to the “sum” of all effective
antagonisms:

P(F)=
∫ ∫

T
(
f (x)� |x− y|)f (x)f (y)dxdy�(1)

This class of measures is neither very useful nor operational, though at this
stage it incorporates the structure of the IA assumptions. In particular, much
depends on the choice of the functional form T . In what follows, we place
axioms on this starting point so as to pin down this functional form.
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2.2. Axioms

Densities and Basic Operations

Our axioms will largely be based on domains that are unions of one or more
very simple densities f that we will call basic densities. These are unnormalized
(by population), are symmetric and unimodal, and have compact support.6

To be sure, f can be population rescaled to any population p by simply mul-
tiplying f pointwise by p to arrive at a new distribution pf (unnormalized).
Likewise, f can undergo a slide. A slide to the right by x is just a new den-
sity g such that g(y) = f (y − x). Likewise for a slide to the left. And f with
mean µ′ can be income rescaled to any new mean µ that we please as follows:
g(x) = (µ′/µ)f (xµ′/µ) for all x.7 These operations maintain symmetry and
unimodality and therefore keep us within the class of basic densities.

If we think of slides and scalings as inducing a partition of the basic densities,
each collection of basic densities in the same element of the partition may be
associated with a root, a basic density with mean 1 and support [0�2], with
population size set to unity. That is, one can transform any basic density to
its root by a set of scalings and slides. (This concept will be important both in
the axioms as well as in the main proof.) Two distinct roots differ in “shape,”
a quality that cannot be transformed by the above operations.

Finally, we shall also use the concept of a squeeze, defined as follows. Let
f be any basic density with mean µ and let λ lie in (0�1]. A λ-squeeze of f is a
transformation as follows:

f λ(x)≡ 1
λ
f

(
x− [1 − λ]µ

λ

)
�(2)

A (λ-)squeeze is, in words, a very special sort of mean-preserving reduction in
the spread of f . It concentrates more weight on the global mean of the distri-
bution, as opposed to what would be achieved, say, with a progressive Dalton
transfer on the same side of the mean. Thus a squeeze truly collapses a density
inwards towards its global mean. The following properties can be formally es-
tablished: (a) For each λ ∈ (0�1), f λ is a density; (b) for each λ ∈ (0�1), f λ has
the same mean as f ; (c) if 0< λ< λ′ < 1, then f λ second-order stochastically
dominates f λ′ ; and (d) as λ ↓ 0, f λ converges weakly to the degenerate mea-
sure granting all weight to µ.

Notice that there is nothing in the definition that requires a squeeze to be
applied to symmetric unimodal densities with compact support. In principle,
a squeeze as defined could be applied to any density. However, the axioms to
be placed below acquire additional cogency when limited to such densities.

6By symmetry we mean that f (m− x)= f (m+ x) for all x ∈ [0�m], where m is the mean and
by unimodality we mean that f is nondecreasing on [0�m].

7The reason for this particular formulation is best seen by examining the corresponding cu-
mulative distribution functions, which must satisfy the property that G(x)= F(xµ′/µ), and then
taking derivatives.
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Statement of the Axioms

We will impose four axioms on the polarization measure.

AXIOM 1: If a distribution is composed of a single basic density, then a squeeze
of that density cannot increase polarization.

Axiom 1 is self-evident. A squeeze, as defined here, corresponds to a global
compression of any basic density. If only one of these makes up the distribution
(see Figure 1), then the distribution is globally compressed and we must asso-
ciate this with no higher polarization. Viewed in the context of our background
model, however, it is clear that Axiom 1 is going to generate some interesting
restrictions. This is because a squeeze creates a reduction in inter-individual
alienation but also serves to raise identification for a positive measure of
agents—those located “centrally” in the distribution. The implied restriction
is, then, that the latter’s positive impact on polarization must be counterbal-
anced by the former’s negative impact.

Our next axiom considers an initial situation (see Figure 2) composed of
three disjoint densities all sharing the same root. The situation is completely
symmetric, with densities 1 and 3 having the same total population and with
density 2 exactly midway between densities 1 and 3.

AXIOM 2: If a symmetric distribution is composed of three basic densities with
the same root and mutually disjoint supports, then a symmetric squeeze of the side
densities cannot reduce polarization.

In some sense, this is the defining axiom of polarization, and may be used
to motivate the concept. Notice that this axiom argues that a particular “local”

FIGURE 1.—A single squeeze cannot increase polarization.
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FIGURE 2.—A double squeeze cannot lower polarization.

squeeze (as opposed to the “global” squeeze of the entire distribution in Ax-
iom 1) must not bring down polarization. At this stage there is an explicit
departure from inequality measurement.

Our third axiom considers a symmetric distribution composed of four basic
densities, once again all sharing the same root.

AXIOM 3: Consider a symmetric distribution composed of four basic densities
with the same root and mutually disjoint supports, as in Figure 3. Slide the two
middle densities to the side as shown (keeping all supports disjoint). Then polar-
ization must go up.

Our final axiom is a simple population-invariance principle. It states that if
one situation exhibits greater polarization than another, it must continue to
do so when populations in both situations are scaled up or down by the same
amount, leaving all (relative) distributions unchanged.

AXIOM 4: If P(F)≥ P(G) and p > 0, then P(pF)≥ P(pG), where pF and
pG represent (identical) population scalings of F and G, respectively.

FIGURE 3.—A “symmetric outward slide” must raise polarization.
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2.3. Characterization Theorem

THEOREM 1: A measure P , as described in (1), satisfies Axioms 1–4 if and only
if it is proportional to

Pα(f )≡
∫ ∫

f (x)1+αf (y)|y − x|dy dx�(3)

where α ∈ [�25�1].

2.4. Discussion

Several aspects of this theorem require extended discussion.

Scaling

Theorem 1 states that a measure of polarization satisfying the preceding
four axioms has to be proportional to the measure we have characterized.
We may wish to exploit this degree of freedom to make the polarization mea-
sure scale-free. Homogeneity of degree zero can be achieved, if desired, by
multiplying Pα(F) by µα−1, where µ is mean income. It is easy to see that this
procedure is equivalent to one in which all incomes are normalized by their
mean, and (3) is subsequently applied.

Importance of the IA Structure

The theorem represents a particularly sharp characterization of the class of
polarization measures that satisfy both the axioms we have imposed and the
IA structure. It must be emphasized that both these factors play a role in pin-
ning down our functional form. In fact, it can be checked that several other
measures of polarization satisfy Axioms 1–4, though we omit this discussion
for the sake of brevity. The IA framework is, therefore, an essential part of the
argument.

Partial Ordering

At the same time, and despite the sharpness of the functional form, notice
that we do not obtain a complete ordering for polarization, nor do we attempt
to do this.8 A range of values of α is entertained in the theorem. The union
of the complete orderings generated by each value gives us a partial order for
polarization. Pinning down this order completely is an open question.

8Indeed, it is possible to impose additional requirements (along the lines explored by ER, for
instance) to place narrower bounds on α. But we do not consider this necessarily desirable. For
instance, the upper value α = 1 has the property that all λ-squeezes of any distribution leave
polarization unchanged. We do not feel that a satisfactory measure must possess this feature.
This is the reason we are more comfortable with a possible range of acceptable values for α.



POLARIZATION 1745

Identification

A full behavioral foundation for the identification postulate is not within the
scope of this paper. However, we make two remarks on the particular specifi-
cation used here.

First, our axioms imply that identification increases with group size. A well-
known problem of collective action (due to Pareto (1906) and Olson (1965))
suggests, however, that smaller groups may sometimes be more effective than
larger groups in securing their ends. This argument has been explored by sev-
eral authors, but perhaps most relevant to the current discussion is Esteban
and Ray (2001), which shows that if social conflict arises over the provision of
public goods (or even if the good is partially private but the cost function for
the supply of lobbying resources has sufficient curvature9), then larger groups
are more effective in the aggregate, even though each individual in such groups
may be less active owing to the free-rider problem. This finding is consistent
with our implication that identification increases with group size.

Second, we remark on our choice of basing identification on the point den-
sity. We may more generally suppose that individuals possess a “window of
identification” as in ER, Section 4. Individuals within this window would be
considered “similar”—possibly with weights decreasing with the distance—and
would contribute to a sense of group identity. At the same time, individuals
would feel alienated only from those outside the window. Thus, broadening
one’s window of identification has two effects. First, it includes more neighbors
when computing one’s sense of identification. Second, it reduces one’s sense of
distance with respect to aliens—because the width of the identification window
affects the “starting point” for alienation.

These two effects can be simultaneously captured in our seemingly narrower
model. Let t be some parameter representing the “breadth” in identification.
Suppose that this means that each individual x will consider an individual with
income y to be at the point (1 − t)x+ ty . (Thus t is inversely proportional to
“breadth”.) The “perceived density” of y from the vantage point of an individ-
ual located at x is then

1
t
f

(
y − (1 − t)x

t

)
so that if t < 1, the sense of identification is generally heightened (simply set
x= y above). Thus a small value of t stands for greater identification.

It can be easily shown that the polarization measure resulting from this
extended notion of identification is proportional to our measure by the fac-
tor t1−α. Therefore, broadening the sense of identification simply amounts to a

9Esteban and Ray prove that if the cost function has enough curvature so that it is “at least”
quadratic, then larger groups are more effective even if the conflict is over purely private goods.
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re-scaling of the measure defined for the limit case in which one is identified
with individuals having exactly the same income.

It is also possible to directly base identification on the average density over
a nondegenerate window. It can be shown that when our polarization measure
is rewritten to incorporate this notion of identification, it converges precisely
to the measure in Theorem 1 as the size of the window converges to zero. Thus
an alternative view of point identification is that it is a robust approximation to
“narrow” identification windows.

Asymmetric Alienation

In ER we already pointed out that in some environments our implicit hy-
pothesis of a symmetric sense of alienation might not be appropriate. It can
be argued that while individuals may feel alienated with respect to those with
higher income or wealth, such sentiments need not be reciprocated. For the ex-
treme case of purely one-sided alienation the appropriate extension would be

Pα(f )≡
∫
f (x)1+α

∫
x

f (y)(y − x)dy dx�

(This is not to say that we have axiomatized such an extension.)
This approach would create a change in the polarization ordering, and de-

pending on the context, it may be a change worth exploring further. The main
difference is that (relative to the symmetric case) larger humps or spikes at the
lower end of the wealth distribution will be given more weight. In particular,
maximal polarization would not be achieved at some symmetric bimodal dis-
tribution but at some bimodal distribution that exhibits a larger (local) mode
at the bottom of the distribution. This issue is discussed in more detail in ER.

Remarks on the Proof, and the Derived Bounds on α

The proof of Theorem 1 is long and involved, so a brief roadmap may be
useful here. The first half of the proof shows that our axioms imply (3), along
with the asserted bounds on α. We begin by noting that the function T must
be (weakly) concave in alienation (Lemmas 1 and 2). Axiom 2 yields this. Yet
by Lemmas 3 and 4 (which centrally employ Axiom 3), T must be (weakly)
convex as well. These two assertions must imply that T is linear in alienation,
and so is of the form T(i� a)= φ(i)a for some function φ (Lemma 4 again).
Lemma 5 completes the derivation of our functional form by using the pop-
ulation invariance principle (Axiom 4) to argue that φ must exhibit constant
elasticity.

Our measure bears an interesting resemblance to the Gini coefficient. In-
deed, if α = 0, the measure is the Gini coefficient. However, our arguments
ensure that not only is α > 0, it cannot go below some uniformly positive lower
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bound, which happens to be .25. Where, in the axioms and in the IA structure,
does such a bound lurk? To appreciate this, consider Axiom 2, which refers
to a double-squeeze of two “side” basic densities. Such squeezes bring down
internal alienations in each component density. Yet the axiom demands that
overall polarization not fall. It follows, therefore, that the increased identifica-
tions created by the squeeze must outweigh the decreased within-component
alienation. This restricts α. It cannot be too low.

By a similar token, α cannot be too high either. The bite here comes from
Axiom 1, which decrees that a single squeeze (in an environment where there is
just one basic component) cannot increase polarization. Once again, alienation
comes down and some identifications go up (as the single squeeze occurs), but
this time we want the decline in alienation to dominate the proceedings. This
is tantamount to an upper bound on α.10

The above arguments are made using Lemmas 6 and 7, which also begin the
proof that the axioms are implied by our class of measures. The various steps
for this direction of the proof, which essentially consist in verifying the axioms,
are completed in Lemmas 8–11.

The approach to our characterization bears a superficial similarity to ER.
Actually, the axioms are similar in spirit, dealing as they do in each case with
issues of identification and alienation. However, their specific structure is fun-
damentally different. This is because our axioms strongly exploit the density
structure of the model (in ER there are only discrete groupings). In turn, this
creates basic differences in the method of proof. It is comforting that the two
approaches yield the same functional characterization in the end, albeit with
different numerical restrictions on the value of α.

2.5. Comparing Distributions

The fundamental hypothesis underlying all of our analysis is that polariza-
tion is driven by the interplay of two forces: identification with one’s own group
and alienation vis-a-vis others. Our axioms yield a particular functional form to
the interaction between these two forces. When comparing two distributions,
which should we expect to display the greater polarization? Our informal an-
swer is that this should depend on the separate contributions of alienation and
identification and on their joint co-movement. Increased alienation is associ-
ated with an increase in income distances. Increased identification would man-
ifest itself in a sharper definition of groups, i.e., the already highly populated
points in the distribution becoming even more populated at the expense of
the less populated. Such a change would produce an increase in the variability

10One might ask: why do the arguments in this paragraph and the one just before lead to
“compatible” thresholds for α? The reason is this: in the double-squeeze, there are cross-group
alienations as well which permit a given increase in identification to have a stronger impact on
polarization. Therefore the required threshold on α is smaller in this case.
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of the density over the support of the distribution. Finally, when taken jointly,
these effects may reinforce each other in the sense that alienation may be high-
est at the incomes that have experienced an increase in identification, or they
may counterbalance each other.

To be sure, it is not possible to move these three factors around indepen-
dently. After all, one density describes the income distribution and the three
factors we have mentioned are byproducts of that density. Nevertheless, think-
ing in this way develops some intuition for polarization, which we will try to
put to use in Section 3.2.

To pursue this line of reasoning, first normalize all incomes by their mean to
make the results scale free. Fix a particular value of α, as given by Theorem 1
(more on this parameter below). The α-identification at income y , denoted
by ια(y), is measured by f (y)α. Hence, the average α-identification ῑ is defined
by

ῑα ≡
∫
f (y)α dF(y)=

∫
f (y)1+α dy�(4)

The alienation between two individuals with incomes y and x is given
by |y − x|. Therefore, the overall alienation felt by an individual with income y ,
a(y), is

a(y)=
∫

|y − x|dF(x)(5)

and the average alienation ā is

ā=
∫
a(y)dF(y)=

∫ ∫
|y − x|dF(x)dF(y)�(6)

(Notice that ā is twice the Gini coefficient.) Now conduct a completely rou-
tine exercise. Define ρ as the normalized covariance between identification and
alienation: ρ≡ covια�a /ῑαā. Then

ρ≡ covια�a
ῑαā

= 1
ῑαā

∫
[ια(y)− ῑα][a(y)− ā]f (y)dy

= 1
ῑαā

[∫
f (y)1+αa(y)dy − āῑα

]
= Pα(f )

ῑαā
− 1�

so that

Pα(f )= āῑα[1 + ρ]�(7)
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This is a more precise statement of the informal idea expressed at the start of
this section.

There is one dimension, however, along which this decomposition lacks in-
tuition. It is that α unavoidably enters into it: we make this explicit by using
the term α-identification (though we will resort to “identification” when there
is little risk of confusion). This sort of identification is not intrinsic to the den-
sity. Yet the formula itself is useful, for it tells us that—all other things being
equal—greater variation, “spikiness,” or multimodality in the density is likely
to translate into greater polarization for that density, this effect making itself
felt more strongly when α is larger. The reason is simple: the main ingredi-
ent for α-identification is the function x1+α (see (4)), which is a strictly convex
function of x.

The connection with spikiness or multimodality ties in with our graphical
intuitions regarding polarization. We reiterate, however, that this is only one
factor of several, and that often it may not be possible to change this factor
in the direction of higher polarization without infringing the ceteris paribus
qualification. For instance, if a unimodal density is altered by the introduction
of two or more local modes, such multimodality per se may not bring higher
polarization with it. This is because the existence of several modes may also
bring average alienation down. In particular, a highly skewed distribution with
a single mode may still exhibit greater polarization relative to other bimodal
distributions. Nevertheless, the connection with “variability” may be helpful in
some situations, and we will invoke it in the empirical discussion of Section 3.2.
Indeed, in unimodal situations (which present the most subtle problems as far
as polarization is concerned), these factors can act as guides to simple visual
inspection.

3. ESTIMATION AND ILLUSTRATION

3.1. Estimation and Statistical Inference

We now turn to estimation issues regarding Pα(F) and associated questions
of statistical inference. The details of this discussion have been omitted to
economize on space, but may be found in the working paper version of this
paper (Duclos, Esteban, and Ray (2003)). First note that for every distribution
function F with associated density f and mean µ, we have that

Pα(F)=
∫
y

f (y)αa(y)dF(y)�(8)

with a(y) ≡ µ + y(2F(y) − 1) − 2
∫ y

−∞ xdF(x). Suppose, then, that we wish
to estimate Pα(F) using a random sample of n i.i.d. observations of in-
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come yi, i= 1� � � � � n, drawn from the distribution F(y) and ordered such that
y1 ≤ y2 ≤ · · · ≤ yn. A natural estimator of Pα(F) is

Pα(F̂)= n−1
n∑
i=1

f̂ (yi)
α â(yi)�(9)

where â(yi) is given as

â(yi)= µ̂+ yi
(
n−1(2i− 1)− 1

) − n−1

(
2
i−1∑
j=1

yj + yi
)
�(10)

µ̂ is the sample mean, and where f̂ (yi)α is estimated nonparametrically us-
ing kernel estimation procedures.11 These procedures use a symmetric kernel
function K(u), defined such that

∫ ∞
−∞K(u)du= 1 and K(u)≥ 0—a Gaussian

kernel is used in the illustration. The estimator f̂ (y) is then defined as
f̂ (y)≡ n−1

∑n

i=1Kh(y − yi), with Kh(z)≡ h−1K(z/h) and h being a bandwidth
parameter. A common technique to select an “optimal” bandwidth h∗ is to
minimize the mean square error (MSE) of the estimator, given a sample of
size n. A “rule-of-thumb” formula that can be used to do this in our context is
approximately given by

h∗ ∼= 4�7n−�5σα�1�(11)

Easily computed, this formula works well with the normal distribution since it
is then never farther than 5% from the h∗ that truly minimizes the MSE. For
skewness larger than about 6, a more robust—though more cumbersome—
approximate formula for the computation of h∗ is given by

h∗ ∼= n−�5IQ
(3�76 + 14�7σln)

(1 + 1�09 · 10−4σln)(7268+15323α)
�(12)

where IQ is the interquartile and σln is the variance of the logarithms of in-
come.

It can also be shown (under certain mild regularity conditions) that
n�5(Pα(F̂) − Pα(F)) has an asymptotic limiting normal distribution N(0� Vα),
with

Vα = var
f(y)

(
(1 + α)f (y)αa(y)+ y

∫
f (x)α dF(x)(13)

+ 2
∫ ∞

y

(x− y)f (x)α dF(x)
)
�

11The literature on kernel density estimation is large—see for instance Silverman (1986),
Härdle (1990), and Pagan and Ullah (1999) for an introduction to it.
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This result is distribution-free in the sense that everything in the above can
be estimated consistently without having to specify the population distribution
from which the sample is drawn.

3.2. An Illustration

We illustrate the above results with data drawn from the Luxembourg In-
come Study (LIS) data sets12 on 21 countries for each of Wave 3 (1989–1992)
and Wave 4 (1994–1997). Countries, survey years, and abbreviations are listed
in Table I. We use household disposable income (i.e., post-tax-and-transfer
income) normalized by an adult-equivalence scale defined as s�5, where s is
household size. Observations with negative incomes are removed as well as
those with incomes exceeding 50 times the average (this affects less than 1% of
all samples). Household observations are weighted by the LIS sample weights
times the number of persons in the household. As discussed in Section 2.4, the
usual homogeneity-of-degree-zero property is imposed throughout by multi-
plying the indices Pα(F) by µα−1 or equivalently by normalizing all incomes by

TABLE I

LIS COUNTRY CODES

Abbreviations Countries Years Sample Sizes

as Australia 1989/1994 16,331/7,441
be Belgium 1992/1997 3,821/4,632
cn Canada 1991/1994 21,647/40,849
cz Czech Republic 1992/1996 16,234/28,148
dk Denmark 1992/1995 12,895/13,124
fi Finland 1991/1995 11,749/9,263
fr France 1989/1994 9,038/11,294
ge Germany 1989/1994 4,187/6,045
hu Hungary 1991/1994 2,019/1,992
is Israel 1992/1997 5,212/5,230
it Italy 1991/1994 8,188/8,135
lx Luxembourg 1991/1994 1,957/1,813
mx Mexico 1989/1996 11,531/14,042
nl Netherlands 1991/1994 4,378/5,187
nw Norway 1991/1995 8,073/10,127
pl Poland 1992/1995 6,602/32,009
rc Rep. of China / Taiwan 1991/1995 16,434/14,706
ru Russia 1992/1995 6,361/3,518
sw Sweden 1992/1995 12,484/16,260
uk United Kingdom 1991/1995 7,056/6,797
us United States 1991/1994 16,052/66,014

12See http://lissy.ceps.lu for detailed information on the structure of these data.
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their mean. For ease of comparison, all indices are divided by 2, so that Pα=0(F)
is the usual Gini coefficient.

Tables II and III show estimates of the Gini (P0) and four polarization indices
(Pα for α = �25� �5� �75�1) in 21 countries for each of the two waves, along
with their asymptotic standard deviations. The polarization indices are typically
rather precisely estimated, with often only the third decimal of the estimators
being subject to sampling variability. Using a conventional test size of 5%, it
can be checked that around 90% of the possible cross-country comparisons
are statistically significant, whatever the value of α. Tables II and III also show
the country rankings, with a high rank corresponding to a relatively large value
of the relevant index, and with countries displayed by their order in the Gini
ranking.

Polarization Behaves Differently from Inequality

Observe first that P0 and P0�25 induce very similar rankings. But considerable
differences arise between P0 and P1. For instance, for Wave 3, the Czech Re-
public has the lowest Gini index of all countries, but ranks 11 in terms of P1.
Conversely, Canada, Australia, and the United States exhibit high Gini in-
equality, but relatively low “P1-polarization.” The correlation across country
rankings for different α’s clearly falls as the distance between the α’s increases.
The lowest Pearson correlation of all—.6753—is the correlation between the
Gini index and P1 in Wave 3. Clearly, polarization and inequality are natu-
rally correlated, but they are also empirically distinct in this dataset. Moreover,
the extent to which inequality comparisons resemble polarization comparisons
depends on the parameter α, which essentially captures the power of the iden-
tification effect.

Alienation and Identification

Recall the decomposition exercise carried out in Section 2.5, in which we
obtained (7), reproduced here for convenience:

Pα = āῑα[1 + ρ]�
Table IV summarizes the relevant statistics for all Wave 3 countries, decompos-
ing polarization as the product of average alienation, average identification,
and (one plus) the normalized covariance between the two. Consider α = 1.
Note that the bulk of cross-country variation in polarization stems from signifi-
cant variation in average identification as well as in average alienation. In con-
trast, the covariance between the two does not exhibit similar variation across
countries. Some countries (Finland, Sweden, and Denmark) rank low both in
terms of inequality and polarization, due in large part to low average alien-
ation. Some countries, most strikingly Russia, Mexico, and the UK rank consis-
tently high both in terms of inequality and polarization—even though average
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TABLE II

POLARIZATION INDICES AND POLARIZATION RANKINGS (RKG) FROM LIS WAVE 3

α= 0 α= �25 α= �50 α= �75 α= 1

Country Index Rkg Index Rkg Index Rkg Index Rkg Index Rkg

cz92 .2082 1 .1767 1 .1637 2 .1585 4 .1575 11
.0023 .0014 .0011 .0011 .0012

fi91 .2086 2 .1782 2 .1611 1 .1505 1 .1436 1
.0017 .0010 .0007 .0005 .0005

be92 .2236 3 .1898 4 .1699 4 .1571 3 .1484 3
.0028 .0018 .0012 .0010 .0010

sw92 .2267 4 .1888 3 .1674 3 .1543 2 .1459 2
.0019 .0012 .0008 .0006 .0006

nw91 .2315 5 .1919 5 .1713 5 .1588 5 .1505 5
.0029 .0017 .0013 .0011 .0011

dk92 .2367 6 .1964 6 .1744 6 .1603 6 .1504 4
.0026 .0015 .0011 .0010 .0011

lx91 .2389 7 .2002 7 .1787 8 .1652 8 .1563 10
.0051 .0032 .0024 .0022 .0023

ge89 .2469 8 .2019 8 .1779 7 .1634 7 .1540 7
.0048 .0028 .0021 .0020 .0021

nl91 .2633 9 .2122 9 .1859 9 .1700 9 .1596 16
.0054 .0031 .0024 .0024 .0025

rc91 .2708 10 .2189 10 .1902 11 .1723 14 .1603 17
.0019 .0011 .0009 .0008 .0009

pl92 .2737 11 .2193 11 .1894 10 .1706 11 .1577 13
.0032 .0019 .0014 .0012 .0013

fr89 .2815 12 .2229 12 .1912 12 .1715 12 .1580 14
.0033 .0019 .0014 .0013 .0014

hu91 .2828 13 .2230 13 .1913 13 .1719 13 .1587 15
.0066 .0039 .0028 .0026 .0027

it91 .2887 14 .2307 15 .1968 15 .1741 15 .1577 12
.0028 .0016 .0012 .0011 .0012

cn91 .2891 15 .2301 14 .1945 14 .1701 10 .1523 6
.0018 .0011 .0008 .0006 .0006

is92 .3055 16 .2421 17 .2051 17 .1804 18 .1626 18
.0036 .0021 .0016 .0015 .0015

as89 .3084 17 .2421 16 .2023 16 .1750 16 .1549 8
.0020 .0012 .0008 .0007 .0008

uk91 .3381 18 .2607 18 .2185 19 .1911 19 .1716 19
.0053 .0028 .0023 .0023 .0025

us91 .3394 19 .2625 19 .2140 18 .1802 17 .1551 9
.0019 .0012 .0008 .0006 .0006

ru92 .4017 20 .2957 20 .2400 20 .2046 20 .1797 20
.0066 .0035 .0029 .0029 .0031

mx89 .4909 21 .3462 21 .2802 21 .2432 21 .2202 21
.0055 .0034 .0030 .0032 .0036

Note: Standard errors appear on every second line.
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TABLE III

POLARIZATION INDICES AND POLARIZATION RANKINGS (RKG) FROM LIS WAVE 4

α= 0 α= �25 α= �50 α= �75 α= 1

Country Index Rkg Index Rkg Index Rkg Index Rkg Index Rkg

fi95 .2174 1 .1832 1 .1661 2 .1564 2 .1506 6
.0027 .0016 .0012 .0011 .0012

sw95 .2218 2 .1845 2 .1652 1 .1549 1 .1498 3
.0019 .0012 .0008 .0007 .0008

lx94 .2353 3 .1978 4 .1764 4 .1633 7 .1549 8
.0043 .0028 .0021 .0017 .0019

nw95 .2403 4 .1970 3 .1750 3 .1616 3 .1527 7
.0049 .0029 .0024 .0023 .0024

be97 .2496 5 .2061 5 .1796 5 .1616 4 .1486 1
.0029 .0018 .0012 .0010 .0010

dk95 .2532 6 .2073 6 .1808 6 .1632 6 .1504 5
.0026 .0015 .0011 .0011 .0011

nl94 .2558 7 .2094 7 .1812 7 .1624 5 .1491 2
.0029 .0018 .0012 .0009 .0010

cz96 .2589 8 .2104 8 .1854 9 .1709 10 .1618 13
.0017 .0010 .0008 .0007 .0008

ge94 .2649 9 .2133 9 .1846 8 .1669 8 .1553 10
.0048 .0030 .0023 .0021 .0022

rc95 .2781 10 .2234 10 .1931 10 .1742 11 .1614 12
.0021 .0013 .0009 .0009 .0010

cn94 .2859 11 .2289 12 .1933 11 .1687 9 .1504 4
.0011 .0007 .0005 .0004 .0003

fr94 .2897 12 .2284 11 .1963 12 .1766 13 .1634 14
.0031 .0018 .0014 .0013 .0014

as94 .3078 13 .2433 14 .2033 14 .1757 12 .1553 9
.0028 .0016 .0012 .0010 .0011

pl95 .3108 14 .2389 13 .2023 13 .1799 14 .1645 15
.0024 .0014 .0011 .0010 .0011

hu94 .3248 15 .2486 15 .2087 15 .1852 15 .1700 18
.0081 .0048 .0037 .0035 .0038

is97 .3371 16 .2598 17 .2159 17 .1871 18 .1666 17
.0044 .0025 .0019 .0018 .0020

it95 .3406 17 .2596 16 .2148 16 .1856 16 .1647 16
.0037 .0021 .0016 .0015 .0016

uk95 .3429 18 .2622 18 .2193 18 .1925 19 .1741 19
.0041 .0022 .0018 .0018 .0020

us94 .3622 19 .2747 19 .2223 19 .1868 17 .1610 11
.0010 .0006 .0004 .0004 .0004

ru95 .4497 20 .3222 20 .2566 20 .2164 20 .1889 20
.0061 .0035 .0028 .0028 .0030

mx96 .4953 21 .3483 21 .2826 21 .2464 21 .2237 21
.0046 .0028 .0025 .0027 .0030

Note: Standard errors appear on every second line.
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TABLE IV

ALIENATION AND IDENTIFICATION—LIS WAVE 3

α= 0
Gini

α= �25 α= �50 α= �75 α= 1

Country ῑ c ῑ · c P ῑ c ῑ · c P ῑ c ῑ · c P ῑ c ῑ · c P

as89 .3084 .8508 .9227 .7851 .2421 .7440 .8815 .6559 .2023 .6627 .8562 .5675 .1750 .5984 .8394 .5023 .1549
be92 .2233 .9110 .9327 .8497 .1897 .8518 .8931 .7608 .1699 .8105 .8678 .7034 .1571 .7811 .8506 .6643 .1484
cn91 .2891 .8634 .9219 .7960 .2301 .7658 .8784 .6727 .1945 .6916 .8509 .5885 .1701 .6332 .8321 .5269 .1523
cz92 .2081 .9504 .8935 .8492 .1767 .9337 .8423 .7865 .1637 .9364 .8132 .7615 .1585 .9526 .7944 .7567 .1575
dk92 .2367 .9051 .9169 .8298 .1964 .8415 .8759 .7370 .1744 .7952 .8519 .6774 .1603 .7598 .8361 .6352 .1504
fi91 .2086 .9227 .9259 .8543 .1782 .8747 .8829 .7723 .1611 .8440 .8547 .7214 .1505 .8248 .8345 .6882 .1435
fr89 .2815 .8782 .9015 .7917 .2229 .7978 .8514 .6792 .1912 .7406 .8224 .6091 .1715 .6979 .8041 .5612 .1580
ge89 .2469 .9021 .9066 .8179 .2019 .8398 .8583 .7208 .1779 .7984 .8290 .6618 .1634 .7707 .8094 .6238 .1540
hu91 .2828 .8797 .8965 .7887 .2230 .8007 .8451 .6767 .1913 .7451 .8157 .6078 .1719 .7042 .7972 .5614 .1587
is92 .3055 .8626 .9188 .7926 .2421 .7663 .8761 .6714 .2051 .6944 .8505 .5906 .1804 .6384 .8337 .5322 .1626
it91 .2887 .8676 .9212 .7993 .2307 .7745 .8802 .6817 .1968 .7046 .8558 .6030 .1741 .6501 .8404 .5463 .1577
lx91 .2389 .9088 .9222 .8381 .2002 .8490 .8807 .7477 .1787 .8081 .8557 .6915 .1652 .7798 .8392 .6544 .1563
mx89 .4909 .8343 .8453 .7052 .3462 .7302 .7817 .5707 .2802 .6588 .7520 .4954 .2432 .6090 .7366 .4486 .2202
nl91 .2633 .8952 .9003 .8059 .2122 .8280 .8526 .7059 .1859 .7822 .8255 .6457 .1700 .7499 .8084 .6062 .1596
nw91 .2315 .9128 .9082 .8290 .1919 .8581 .8623 .7400 .1713 .8216 .8347 .6859 .1588 .7970 .8158 .6502 .1505
pl92 .2737 .8837 .9067 .8013 .2193 .8068 .8575 .6919 .1894 .7526 .8278 .6230 .1705 .7129 .8081 .5762 .1577
rc91 .2708 .8883 .9099 .8083 .2189 .8152 .8616 .7024 .1902 .7645 .8323 .6362 .1723 .7281 .8130 .5919 .1603
ru92 .4017 .8300 .8868 .7361 .2957 .7138 .8369 .5974 .2400 .6282 .8108 .5094 .2046 .5622 .7960 .4475 .1797
sw92 .2267 .9077 .9177 .8330 .1888 .8499 .8691 .7387 .1674 .8126 .8376 .6807 .1543 .7889 .8159 .6436 .1459
uk91 .3381 .8521 .9047 .7709 .2607 .7498 .8618 .6461 .2185 .6737 .8390 .5652 .1911 .6145 .8258 .5074 .1716
us91 .3394 .8298 .9320 .7734 .2625 .7063 .8930 .6307 .2140 .6116 .8685 .5311 .1803 .5364 .8520 .4571 .1551
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identification for the three countries is among the lowest of all. Average alien-
ation is very high in these countries. Yet other countries show low inequal-
ity but relatively high polarization, while others exhibit the reverse relative
rankings.

While maintaining the same average alienation, the UK density exhibits
higher variability than its US counterpart—see the upper panel in Figure 4.
The US distribution shows a remarkably flat density on the interval [�25�1�25]
of normalized incomes and so has thick tails. In contrast, the UK displays a
clear mode at y = �4 and thinner tails. Because—as already discussed in Sec-
tion 2.5—the identification function f α times the density f is strictly convex
in f , the country with the greater variation in identification will exhibit a higher
value of average identification, with the difference growing more pronounced as
α increases. To be sure, variations in identification find their starkest expres-
sion when distributions are multimodal, but even without such multimodality,
variation is possible.

Remember that variation in identification is only one of several factors. In
particular, we do not mean to suggest that the country with the greater varia-
tion in identification will invariably exhibit greater polarization as α→ 1. For
instance, our notion of a squeeze increases the variability of identification, but
polarization must fall, by Axiom 1 (this is because alienation falls too with the
squeeze). See the discussion at the end of Section 2.5 for another illustration
of this point.

Sensitivity to α

As α increases from .25 to 1, the cross-country variation in the value of aver-
age α-identification goes up. This increase in cross-country variability produces
frequent “crossings” in the ranking of countries by polarization. Such crossings
can occur at very low values of α (below .25) so that for all α ∈ [�25�1] the po-
larization ranking opposes the inequality ranking. This is the case (for Wave 3)
for Belgium–Sweden, Italy–Canada, and Israel–Australia. Crossings could—
and do—occur for intermediate values of α ∈ [�25�1]. To be sure, they may not
occur for any α≤ 1, thus causing the polarization ordering to coincide with the
inequality ordering. This is indeed a most frequent case for pairwise compar-
isons in Wave 3. Finally, in Wave 4 we also observe “double crossings” in the
cases of Canada–France and Australia–Poland. In both cases the first country
starts with higher inequality, P0, followed by a lower value of P�25, but later
returning to higher values for larger values of α.

UK inequality is very close to US inequality; for all intents and purposes the
two have the same Gini in Wave 3. Indeed, the UK ranks eighteenth and the US
nineteenth—this is true for any α< �33. However, as α increases beyond .33 up
to 1, the UK retains the nineteenth position, while the US descends to ninth in
the rankings. That fall in rankings occurs mostly when α increases beyond .75.

The Czech–US densities provide additional visual support to this sensiti-
vity—see the lower panel in Figure 4. Here, the basic inequality comparison
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FIGURE 4.—Estimated densities for the US, UK, and Czech Republic, Wave 3.
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is unambiguous: the Czech Republic has lower inequality than the US. But the
Czech Republic has a spikier density with greater variation in it. This “shadow
of multimodality” kicks in as α is increased, so much so that the Czech Republic
is actually deemed equally or more polarized than the US by the time α= 1.

Partial Ordering

One might respond to the above observations as follows: our axiomatics do
not rule out values of α very close to .25. Hence, in the strict sense of a partial
order we are unable to (empirically) distinguish adequately between inequality
and polarization, at least with the dataset at hand. In our opinion this response
would be too hasty. Our characterization not only implies a partial ordering,
it provides a very clean picture of how that ordering is parameterized, with
the parameter α having a definite interpretation. If substantial variations in
ranking occur as α increases, this warrants a closer look, and certainly shows—
empirically—how “large” subsets of polarization indices work very differently
from the Gini inequality index.13

4. FINAL REMARKS, AND A PROPOSED EXTENSION

In this paper we present and characterize a class of measures for income
polarization, based on what we call the identification-alienation structure. Our
approach is fundamentally based on the view that interpersonal alienation fu-
els a polarized society, as does inequality. Our departure from inequality mea-
surement lies in the notion that such alienation must also be complemented
by a sense of identification. This combination of the two forces generates a
class of measures that are sensitive (in the same direction) to both elements of
inequality and equality, depending on where these changes are located in the
overall distribution.

Our characterization, and the alternative decomposition presented in (7),
permit us to describe the measure very simply: for any income distribution,
polarization is the product of average alienation, average identification, and
(one plus) the mean-normalized covariance between these two variables. We
also discuss estimation issues for our measures as well as associated questions
of statistical inference.

We wish to close this paper with some remarks on what we see to be the main
conceptual task ahead. Our analysis generates a certain structure for identifi-
cation and alienation functions in the special case in which both identification
and alienation are based on the same characteristic. This characteristic can be

13One would expect these distinctions to magnify even further for distributions that are not
unimodal (unfortunately, this exploration is not permitted by our dataset). For instance, one
might use our measures to explore the “twin-peaks” property identified by Quah (1996) for the
world distribution of income. But this is the subject of future research.
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income or wealth. In principle it could be any measurable feature with a well-
defined ordering. The key restriction, however, is that whatever we choose the
salient characteristic for identification to be, intergroup alienation has to be
driven by the very same characteristic. This seems obvious in the cases of in-
come or wealth. Yet, for some relevant social characteristics this might not be
a natural assumption. Think of the case of ethnic polarization. It may or may
not seem appropriate here to base interethnic alienation as only depending
on some suitably defined “ethnicity distance.” In the cases of socially based
group identification we find it more compelling to adopt a multidimensional
approach to polarization, permitting alienation to depend on characteristics
other than the one that defines group identity. In this proposed extension, we
liberally transplant our findings to the case of social polarization, but with no
further axiomatic reasoning. In our opinion, such reasoning is an important
subject of future research.

Suppose, then, that there are M “social groups,” based on region, kin, eth-
nicity, religion� � � � Let nj be the number of individuals in group j, with overall
population normalized to one. Let Fj describe the distribution of income in
group j (with fj the accompanying density), unnormalized by group popula-
tion. One may now entertain a variety of “social polarization measures.”

4.1. Pure Social Polarization

Consider, first, the case of “pure social polarization,” in which income plays
no role. Assume that each person is “fully” identified with every other member
of his group. Likewise, the alienation function takes on values that are specific
to group pairs and have no reference to income. For each pair of groups j and k
denote this value by ∆jk. Then a natural transplant of (3) yields the measure

Ps(F)=
M∑
j=1

M∑
k=1

n1+α
j nk∆jk�(14)

Even this sort of specification may be too general in some interesting in-
stances in which individuals are interested only in the dichotomous percep-
tion Us/They. In particular, in these instances, individuals are not interested
in differentiating between the different opposing groups. Perhaps the simplest
instance of this is a pure contest (Esteban and Ray (1999)), which yields the
variant14

P̃s(F)=
M∑
j=1

n1+α
j (1 − nj)�(15)

14See Reynal-Querol (2002) for a similar analysis. D’Ambrosio and Wolff (2001) also consider
a measure of this type but with income distances across groups explicitly considered.
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4.2. Hybrids

Once the two extremes—pure income polarization and pure social pola-
rization—are identified, we may easily consider several hybrids. As examples,
consider the case in which notions of identification are mediated not just by
group membership but by income similarities as well, while the antagonism
equation remains untouched. Then we get what one might call social polariza-
tion with income-mediated identification:

Ps(F)=
M∑
j=1

(1 − nj)
∫
x

fj(x)
α dFj(x)�(16)

One could expand (or contract) the importance of income further, while still
staying away from the extremes. For instance, suppose that—in addition to the
income-mediation of group identity—alienation is also income-mediated (for
alienation, two individuals must belong to different groups and have differ-
ent incomes). Now groups have only a demarcating role—they are necessary
(but not sufficient) for identity, and they are necessary (but not sufficient) for
alienation. The resulting measure would look like this:

P∗(F)=
M∑
j=1

∑
k�=j

∫
x

∫
y

fj(x)
α|x− y|dFj(x)dFk(y)�(17)

Note that we do not intend to suggest that other special cases or hybrids are
not possible, or that they are less important. The discussion here is only to
show that social and economic considerations can be profitably combined in
the measurement of polarization. Indeed, it is conceivable that such measures
will perform better than the more commonly used fragmentation measures in
the analysis of social conflict. But a full exploration of this last theme must
await a future paper.
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APPENDIX

PROOF OF THEOREM 1: First, we show that Axioms 1–4 imply (3). The lemma below follows
from Jensen’s inequality; proof is omitted.
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LEMMA 1: Let g be a continuous real-valued function defined on R such that for all x > 0 and
all δ with 0<δ< x,

g(x)≥ 1
2δ

∫ x+δ

x−δ
g(y)dy�(18)

Then g must be a concave function.

In what follows, remember that our measure only considers income differences across people,
so that we may slide any distribution to left or right as we please.

LEMMA 2: The function T must be concave in a for every i > 0.

PROOF: Fix x > 0, some i > 0, and δ ∈ (0� x). Consider three basic densities as in Axiom 2 (see
Figure 2) but specialize as shown in Figure 5; each is a transform of a uniform basic density. The
bases are centered at −x, 0, and x. The side densities are of width 2δ and height h, and the middle
density is of width 2ε and height i. We shall vary ε and h but to make sure that Axiom 2 applies,
we choose ε > 0 such that δ+ ε < x. A λ-squeeze of the side densities simply contracts their base
width to 2λδ, while the height is raised to h/λ. For each λ, decompose the measure (1) into five
components: (a) the “internal polarization” Pm of the middle rectangle (this component does not
vary with λ so there will be no need to explicitly calculate it); (b) the “internal polarization” Ps of
each side rectangle; (c) total effective antagonism, Ams, felt by inhabitants of the middle towards
each side density; (d) total effective antagonism, Asm , felt by inhabitants of each side towards the
middle; (e) total effective antagonism, Ass , felt by inhabitants of one side towards the other side.
Each of these last four terms appear twice, so that (writing everything as a function of λ),

P(λ)= Pm + 2Ps(λ)+ 2Ams(λ)+ 2Asm(λ)+ 2Ass(λ)�(19)

Now we compute the terms on the right-hand side of (19). First,

Ps(λ)= 1
λ2

∫ x+λδ

x−λδ

∫ x+λδ

x−λδ
T (h/λ� |b′ − b|)h2 db′ db�

FIGURE 5.
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where (here and in all subsequent cases) b will stand for the “origin” income (to which the iden-
tification is applied) and b′ for the “destination” income (towards which the antagonism is felt).
Next,

Ams(λ)= 1
λ

∫ ε

−ε

∫ x+λδ

x−λδ
T (i� b′ − b)ihdb′ db�

Third,

Asm(λ)= 1
λ

∫ x+λδ

x−λδ

∫ ε

−ε
T (h/λ�b− b′)hi db′ db�

and finally,

Ass(λ)= 1
λ2

∫ −x+λδ

−x−λδ

∫ x+λδ

x−λδ
T (h/λ�b′ − b)h2 db′ db�

The axiom requires that P(λ) ≥ P(1). Equivalently, we require that [P(λ) − P(1)]/2h ≥ 0 for
all h, which implies in particular that

lim inf
h→0

P(λ)− P(1)
2h

≥ 0�(20)

If we divide through by h in the individual components calculated above and then send h to 0, it
is easy to see that the only term that remains is Ams . Formally, (20) and the calculations above
must jointly imply that

1
λ

∫ ε

−ε

∫ x+λδ

x−λδ
T (i� b′ − b)db′ db≥

∫ ε

−ε

∫ x+δ

x−δ
T (i� b′ − b)db′ db�(21)

and this must be true for all λ ∈ (0�1) as well as all ε ∈ (0� x− δ). Therefore we may insist on the
inequality in (21) holding as λ→ 0. Performing the necessary calculations, we may conclude that

1
ε

∫ ε

−ε
T (i� x− b)db≥ 1

ε

∫ ε

−ε

∫ x+δ

x−δ
T (i� b′ − b)db′ db(22)

for every ε ∈ (0� x− δ). Finally, take ε to zero in (22). This allows us to deduce that

T(i� x)≥
∫ x+δ

x−δ
T (i� b′)db′�(23)

As (23) must hold for every x > 0 and every δ ∈ (0� x), we may invoke Lemma 1 to conclude that
T is concave in x for every i > 0. Q.E.D.

LEMMA 3: Let g be a concave, continuous function on R+, with g(0)= 0. Suppose that, for each
a and a′ with a > a′ > 0, there exists ∆̄ > 0 such that

g(a+∆)− g(a)≥ g(a′)− g(a′ −∆)(24)

for all ∆ ∈ (0� ∆̄). Then g must be linear.

The proof is straightforward and is omitted.

LEMMA 4: There is a continuous function φ(i) such that T(i� a)=φ(i)a for all i and a.



POLARIZATION 1763

FIGURE 6.

PROOF: Fix a and a′ with a > a′ > 0, and i > 0. Consider four basic densities as in Axiom 3
(see Figure 3) but specialize as shown in Figure 6; each is a transform of a uniform basic density.
The bases are centered at locations −y , −x, x, and y , where x ≡ (a− a′)/2 and y ≡ (a+ a′)/2.
The “inner” densities are of width 2δ and height h, and the “outer” densities are of width 2ε
and height i. We shall vary different parameters (particularly x) but to ensure disjoint support
we assume throughout that ε < x and δ+ ε < y − x− ∆̄ for some ∆̄ > 0. Again, decompose the
polarization measure (1) into several distinct components: (a) the “internal polarization” of each
rectangle j (call it Pj , j = 1�2�3�4); these components are unchanged as we change x so there will
be no need to calculate them explicitly; (b) total effective antagonism Ajk(x) felt by inhabitants
of rectangle j towards rectangle k (we emphasize dependence on the parameter x). Thus total
polarization P(x) is given by

P(x) =
4∑
j=1

Pj +
∑
j

∑
k �=j
Ajk(x)

=
4∑
j=1

Pj + 2A12(x)+ 2A13(x)+ 2A21(x)+ 2A31(x)+ 2A23(x)+ 2A14�

where the second equality simply exploits obvious symmetries andA14 is noted to be independent
of x. Let us compute the terms in this formula that do change with x. We have

A12(x)=
∫ −y+ε

−y−ε

∫ −x+δ

−x−δ
T (i� b′ − b)ihdb′ db�

A13(x)=
∫ −y+ε

−y−ε

∫ x+δ

x−δ
T (i� b′ − b)ihdb′ db�

A21(x)=
∫ −x+δ

−x−δ

∫ −y+ε

−y−ε
T (h�b− b′)ihdb′ db�
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A31(x)=
∫ x+δ

x−δ

∫ −y+ε

−y−ε
T (h�b− b′)ihdb′ db�

and

A23(x)=
∫ −x+δ

−x−δ

∫ x+δ

x−δ
T (h�b− b′)h2 db′ db�

Now, the axiom requires that P(x + ∆) − P(x) ≥ 0. Equivalently, we require that [P(x + ∆) −
P(1)]/2ih ≥ 0 for all h, which implies in particular that

lim inf
h→0

P(x+∆)− P(x)
2ih

≥ 0�

Using this information along with the computations for P(x) and the various Ajk(x)’s, we see
(after some substitution of variables and transposition of terms) that∫ −y+ε

−y−ε

∫ x+δ

x−δ
[T(i� b′ − b+∆)− T(i� b′ − b)]db′ db

≥
∫ −y+ε

−y−ε

∫ −x+δ

−x−δ
[T(i� b′ − b)− T(i� b′ − b−∆)]db′ db�

Dividing through by δ in this expression and then taking δ to zero, we may conclude that∫ −y+ε

−y−ε
[T(i� x− b+∆)− T(i� x− b)]db

≥
∫ −y+ε

−y−ε
[T(i�−x− b)− T(i�−x− b−∆)]db�

and dividing this inequality, in turn, by ε and taking ε to zero, we see that

T(i� a+∆)− T(i� a)≥ T(i� a′)− T(i� a′ −∆)�
where we use the observations that x+y = a and y−x= a′. Therefore the conditions of Lemma 3
are satisfied, and T(i� ·) must be linear for every i > 0 since T(0� a)= 0. That is, there is a func-
tion φ(i) such that T(i� a)= φ(i)a for every i and a. Given that T is continuous by assumption,
the same must be true of φ. Q.E.D.

LEMMA 5: φ(i) must be of the form Kiα for constants (K�α)� 0.

PROOF: As a preliminary step, observe that

φ(i) > 0 whenever i > 0;(25)

otherwise Axiom 3 would fail for configurations constructed from rectangular basic densities of
equal height i. We first prove that φ satisfies the fundamental Cauchy equation

φ(p)φ(p′)=φ(pp′)φ(1)(26)

for every (p�p′)� 0. To this end, fix p and p′ and define r ≡ pp′. In what follows, we assume
that p≥ r.15 Consider a configuration with two basic densities, both of width 2ε, the first centered

15If r ≥ p, simply permute p and r in the argument below.
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at 0 and the second centered at 1. The heights are p and h (where h > 0 but soon to be made
arbitrarily small). A little computation shows that polarization in this case is given by

P = ph[φ(p)+φ(h)]
{∫ ε

−ε

∫ 1+ε

1−ε
(b′ − b)db′ db

}
(27)

+ [p2φ(p)+ h2φ(h)]
{∫ ε

−ε

∫ ε

−ε
|b′ − b|db′ db

}

= 4ε2ph[φ(p)+φ(h)] + 8ε3

3
[p2φ(p)+ h2φ(h)]�

where the first equality invokes Lemma 4. Now change the height of the first rectangle to r.
Using (25) and p≥ r, it is easy to see that for each ε, there exists a (unique) height h(ε) for the
second rectangle such that the polarizations of the two configurations are equated. Invoking (27),
h(ε) is such that

ph[φ(p)+φ(h)] + 2ε
3

[p2φ(p)+ h2φ(h)](28)

= rh(ε)[φ(r)+φ(h(ε))] + 2ε
3

[
r2φ(r)+ h(ε)2φ(h(ε))

]
�

By Axiom 4, it follows that for all λ> 0,

λ2ph[φ(λp)+φ(λh)] + 2ε
3

[(λp)2φ(λp)+ (λh)2φ(λh)](29)

= λ2rh(ε)
[
φ(λr)+φ(λh(ε))] + 2ε

3
[
(λr)2φ(λr)+ [λh(ε)]2φ(λh(ε))

]
�

Notice that as ε ↓ 0, h(ε) lies in some bounded set. We may therefore extract a convergent sub-
sequence with limit h′ as ε ↓ 0. By the continuity of φ, we may pass to the limit in (28) and (29)
to conclude that

ph[φ(p)+φ(h)] = rh′[φ(r)+φ(h′)](30)

and

λ2ph[φ(λp)+φ(λh)] = λ2rh′[φ(λr)+φ(λh′)]�(31)

Combining (30) and (31), we see that

φ(p)+φ(h)
φ(λp)+φ(λh) = φ(r)+φ(h′)

φ(λr)+φ(λh′)
�(32)

Taking limits in (32) as h→ 0 and noting that h′ → 0 as a result (examine (30) to confirm this),
we have for all λ > 0,

φ(p)

φ(λp)
= φ(r)

φ(λr)
�(33)

Put λ = 1/p and recall that r = pp′ . Then (33) yields the required Cauchy equation (26). To
complete the proof, recall that φ is continuous and that (25) holds. The class of solutions to (26)
(that satisfy these additional qualifications) is completely described by φ(p)=Kpα for constants
(K�α)� 0 (see, e.g., Aczél (1966, p. 41, Theorem 3)). Q.E.D.

Lemmas 4 and 5 together establish “necessity,” though it still remains to establish the bounds
on α. We shall do so along with our proof of “sufficiency,” which we begin now.
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LEMMA 6: Let f be a basic density with mass p and mean µ on support [a�b]. Let m ≡ µ − a
and let f ∗ denote the root of f . Then, if f λ denotes some λ-squeeze of f ,

P(Fλ)= 4kp2+α(mλ)1−α
∫ 1

0
f ∗(x)1+α

{∫ 1

0
f ∗(y)(1 − y)dy +

∫ 1

x

f ∗(y)(y − x)dy
}
dx(34)

for some constant k> 0.

PROOF: Recall that a slide of f has no effect on the computations, so we may as well set a= 0
and b= 2m, where m= µ− a is now to be interpreted as the mean. Given (3),

P(F)= k
∫ ∫

f (x)1+αf (y)|y − x|dy dx(35)

for some k> 0. Using the fact that f is symmetric, we can write

P(F) = 2k
∫ m

0

∫ 2m

0
f (x′)1+αf (y ′)|x′ − y ′|dy ′ dx′(36)

= 2k
∫ m

0
f (x′)1+α

{∫ x′

0
f (y ′)(x′ − y ′)dy ′ +

∫ m

x′
f (y ′)(y ′ − x′)dy ′

+
∫ 2m

m

f (y ′)(y ′ − x′)dy ′
}
dx′�

Examine the very last term in (36). Change variables by setting z ≡ 2m− y ′ , and use symmetry to
deduce that∫ 2m

m

f (y ′)(y ′ − x′)dy ′ =
∫ m

0
f (z)(2m− x′ − z)dz�

Substituting this in (36), and manipulating terms, we obtain

P(F)= 4k
∫ m

0
f (x′)1+α

{∫ m

0
f (y ′)(m− y ′)dy ′ +

∫ m

x′
f (y ′)(y ′ − x′)dy ′

}
dx′�(37)

Now suppose that f λ is a λ-squeeze of f . Note that (37) holds just as readily for f λ as for f .
Therefore, using the expression for f given in (2), we see that

P(Fλ) = 4kλ−(2+α)
∫ m

(1−λ)m
f

(
x′ − (1 − λ)m

λ

)1+α

×
{∫ m

(1−λ)m
f

(
y ′ − (1 − λ)m

λ

)
(m− y ′)dy ′

+
∫ m

x′
f

(
y ′ − (1 − λ)m

λ

)
(y ′ − x′)dy ′

}
dx′�

Perform the change of variables

x′′ = x′ − (1 − λ)m
λ

and y ′′ = y ′ − (1 − λ)m
λ

�

Then it is easy to see that

P(Fλ)= 4kλ1−α
∫ m

0
f (x′′)1+α

{∫ m

0
f (y ′′)(m− y ′′)dy ′′ +

∫ m

x′′
f (y ′′)(y ′′ − x′′)dy ′′

}
dx′′�
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To complete the proof, we must recover the root f ∗ from f . To this end, first population-scale f
to h, where h has mass 1. That is, f (z)= ph(z) for all z. Doing so, we see that

P(Fλ) = 4kp2+αλ1−α
∫ m

0
h(x′′)1+α

{∫ m

0
h(y ′′)(m− y ′′)dy ′′

+
∫ m

x′′
h(y ′′)(y ′′ − x′′)dy ′′

}
dx′′�

Finally, make the change of variables x= x′′/m and y = y ′′/m. Noting that f ∗(z)=mh(mz), we
get (34). Q.E.D.

LEMMA 7: Let f and g be two basic densities with disjoint support, with their means separated by
distance d, and with population masses p and q respectively. Let f have mean µ on support [a�b].
Let m≡µ− a and let f ∗ denote the root of f . Then, for any λ-squeeze f λ of f ,

A(f λ� g)= 2kdp1+αq(mλ)−α
∫ 1

0
f ∗(x)1+α dx�(38)

where A(f λ� g) denotes the total effective antagonism felt by members of f λ towards members of g.

PROOF: Without loss of generality, let f have support [0�2m] (with mean m) and g have
support [d�d+ 2m] (where d ≥ 2m for disjoint supports). Using (35),

A(f�g) = k

∫ 2m

0
f (x)1+α

[∫ d+2m

d

g(y)(y − x)dy
]
dx

= k

∫ 2m

0
f (x)1+α

[∫ d+m

d

g(y)(y − x)dy +
∫ d+2m

d+m
g(y)(y − x)dy

]
dx

= k

∫ 2m

0
f (x)1+α

[∫ d+m

d

g(y)2(m+ d− x)dy
]
dx

= kq

∫ 2m

0
f (x)1+α(m+ d− x)dx

= 2dkq
∫ m

0
f (x)1+α dx�

where the third equality exploits the symmetry of g,16 the fourth equality uses the fact that∫ d+m
d

g(y) = q/2, and the final equality uses the symmetry of f .17 To be sure, this formula ap-
plies to any λ-squeeze of f , so that

A(f λ� g) = 2dkq
∫ m

0
f λ(x′)1+α dx′

= 2dkqλ−(1+α)
∫ m

(1−λ)m
f

(
x′ − (1 − λ)m

λ

)1+α
dx′�

16That is, for each y ∈ [d�d +m], g(y) = g(d + 2m− (y − d))= g(2d + 2m− y). Moreover,
[y − x] + [(2d + 2m− y)− x] = 2(d+m− x).

17That is, for each x ∈ [0�m], f (x) = f (2m − x). Moreover, [m + d − x] + [m + d −
(2m− x)] = 2d.
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and making the change of variables

x′′ = x′ − (1 − λ)m
λ

�

we may conclude that

A(f λ� g)= 2dkqλ−α
∫ m

0
f (x′′)1+α dx′′�

To complete the proof, we must recover the root f ∗ from f . As in the proof of Lemma 6, first
population-scale f to h, where h has mass 1. That is, f (z)=ph(z) for all z. Doing so, we see that

A(f λ� g)= 2dkp1+αqλ−α
∫ m

0
h(x′′)1+α dx′′�

Finally, make the change of variables x = x′′/m. Noting that f ∗(z) = mh(mz), we get (38).
Q.E.D.

LEMMA 8: Define, for any root f and α > 0,

ψ(f�α)≡
∫ 1

0 f (x)
1+α dx∫ 1

0 f (x)
1+α{∫ 1

0 f (y)(1 − y)dy + ∫ 1
x
f (y)(y − x)dy}dx

�(39)

Then—for any α> 0—ψ(f�α) attains its minimum value when f is the uniform root, and this mini-
mum value equals 3.

PROOF: It will be useful to work with the inverse function

ζ(f�α)≡ψ(f�α)−1 =
∫ 1

0 f (x)
1+α{∫ 1

0 f (y)(1 − y)dy + ∫ 1
x
f (y)(y − x)dy}dx∫ 1

0 f (x)
1+α dx

�

Note that ζ(f�α) may be viewed as a weighted average of

L(x)≡
∫ 1

0
f (y)(1 − y)dy +

∫ 1

x

f (y)(y − x)dy(40)

as this expression varies over x ∈ [0�1], where the “weight” on a particular x is just

f (x)1+α∫ 1
0 f (z)

1+α dz
�

which integrates over x to 1. Now observe that L(x) is decreasing in x. Moreover, by the uni-
modality of a root, the weights must be nondecreasing in x. It follows that

ζ(f�α)≤
∫ 1

0
L(x)dx�(41)

Now

L(x) =
∫ 1

0
f (y)(1 − y)dy +

∫ 1

x

f (y)(y − x)dy(42)

=
∫ 1

0
f (y)(1 − x)dy +

∫ x

0
f (y)(x− y)dy

= 1 − x
2

+
∫ x

0
f (y)(x− y)dy�
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Because f (x) is nondecreasing and integrates to 1/2 on [0�1], it must be the case that∫ x
0 f (y)(x− y)dy ≤ ∫ x

0 (x− y)/2dy for all x≤ 1. Using this information in (42) and combining it
with (41),

ζ(f�α) ≤
∫ 1

0

[
1 − x

2
+

∫ x

0

x− y
2

dy

]
dx(43)

=
∫ 1

0

[∫ 1

0

[
1 − y

2

]
dy +

∫ 1

x

[
y − x

2

]
dy

]
dx

= ζ(u�α)�

where u stands for the uniform root taking constant value 1/2 on [0�2]. Simple integration reveals
that ζ(u�α)= 1/3. Q.E.D.

LEMMA 9: Given that P(f ) is of the form (35), Axiom 1 is satisfied if and only if α≤ 1.

PROOF: Simply inspect (34). Q.E.D.

LEMMA 10: Given that P(f ) is of the form (35), Axiom 2 is satisfied if and only if α≥ �25.

PROOF: Consider a configuration as given in Axiom 2: a symmetric distribution made out
of three basic densities. By symmetry, the side densities must share the same root; call this f ∗.
Let p denote their (common) population mass and m their (common) difference from their
means to their lower support. Likewise, denote the root of the middle density by g∗, by q its
population mass, and by n the difference between mean and lower support. As in the proof of
Lemma 2, we may decompose the polarization measure (35) into several components. First, there
are the “internal polarizations” of the middle density (Pm) and of the two side densities (Ps). Next,
there are various subtotals of effective antagonism felt by members of one of the basic densities
towards another basic density. Let Ams denote this when the “origin” density is the middle and
the “destination” density one of the sides. Likewise, Asm is obtained by permuting origin and
destination densities. Finally, denote by Ass the total effective antagonism felt by inhabitants of
one side towards the other side. Observe that each of these last four terms appear twice, so that
(writing everything as a function of λ), overall polarization is given by

P(λ)= Pm + 2Ps(λ)+ 2Ams(λ)+ 2Asm(λ)+ 2Ass(λ)�(44)

Compute these terms. For brevity, define for any root h

ψ1(h�α)≡
∫ 1

0
h(x)1+α

{∫ 1

0
h(y)(1 − y)dy +

∫ 1

x

h(y)(y − x)dy
}
dx

and

ψ2(h�α)≡
∫ 1

0
h(x)1+α dx�

Now, using Lemmas 6 and 7, we see that

Ps(λ)= 4kp2+α(mλ)1−αψ1(f
∗� α)�

while

Ams(λ)= 2kdq1+αpn−αψ2(g
∗� α)�

Moreover,

Asm(λ)= 2kdp1+αq(mλ)−αψ2(f
∗� α)
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and

Ass(λ)= 4kdp2+α(mλ)−αψ2(f
∗� α)

(where it should be remembered that the distance between the means of the two side densities
is 2d). Observe from these calculations that Ams(λ) is entirely insensitive to λ. Consequently,
feeding all the computed terms into (44), we may conclude that

P(λ)=C
[

2λ1−α + d

m
ψ(f ∗� α)λ−α

{
q

p
+ 2

}]
+D�

where C and D are positive constants independent of λ, and

ψ(f ∗� α)= ψ2(f
∗� α)

ψ1(f ∗� α)

by construction; see (39) in the statement of Lemma 8. It follows from this expression that for
Axiom 2 to hold, it is necessary and sufficient that for every three-density configuration of the sort
described in that axiom,

2λ1−α + d

m
ψ(f ∗� α)λ−α

[
q

p
+ 2

]
(45)

must be nonincreasing in λ over (0�1]. An examination of the expression in (45) quickly shows
that a situation in which q is arbitrarily close to zero (relative to p) is a necessary and sufficient
test case. By the same logic, one should make d/m as small as possible. The disjoint-support
hypothesis of Axiom 2 tells us that this lowest value is 1. So it will be necessary and sufficient to
show that for every root f ∗,

λ1−α +ψ(f ∗� α)λ−α(46)

is nonincreasing in λ over (0�1]. For any f ∗, it is easy enough to compute the necessary and
sufficient bounds on α. Simple differentiation reveals that

(1 −α)λ−α −αψ(f ∗� α)λ−(1+α)

must be nonnegative for every λ ∈ (0�1]; the necessary and sufficient condition for this is

α≥ 1
1 +ψ(f ∗� α)

�(47)

Therefore, to find the necessary and sufficient bound on α (uniform over all roots), we need to
minimize ψ(f ∗� α) by choice of f ∗, subject to the condition that f ∗ be a root. By Lemma 8, this
minimum value is 3. Using this information in (47), we are done. Q.E.D.

LEMMA 11: Given that P(f ) is of the form (35), Axiom 3 is satisfied.

PROOF: Consider a symmetric distribution composed of four basic densities, as in the state-
ment of Axiom 3. Number the densities 1, 2, 3, and 4, in the same order displayed in Figure 6.
Let x denote the amount of the slide (experienced by the inner densities) in the axiom. For each
such x, let djk(x) denote the (absolute) difference between the means of basic densities j and k.
As we have done several times before, we may decompose the polarization of this configuration
into several components. First, there is the “internal polarization” of each rectangle j; call it Pj ,
j = 1�2�3�4. (These will stay unchanged with x.) Next, there is the total effective antagonism
felt by inhabitants of each basic density towards another; call this Ajk(x), where j is the “origin”
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density and k is the “destination” density. Thus total polarization P(x), again written explicitly
as a function of x, is given by

P(x)=
4∑
j=1

Pj +
∑
j

∑
k �=j
Ajk(x)

so that, using symmetry,

P(x)− P(0)= 2
{[A12(x)+A13(x)] − [A12(0)+A13(0)]

} + [A23(x)−A23(0)]�(48)

Now Lemma 7 tells us that for all i and j,

Aij(x)= kijdij(x)�
where kij is a positive constant that is independent of distances across the two basic densities, and
in particular is independent of x. Using this information in (48), it is trivial to see that

P(x)− P(0)=A23(x)−A23(0)= kijx > 0�

so that Axiom 3 is satisfied. Q.E.D.

Given (35), Axiom 4 is trivial to verify. Therefore Lemmas 9, 10, and 11 complete the proof of
the theorem. Q.E.D.

REFERENCES

ACZÉL, J. (1966): Lectures on Functional Equations and Their Applications. New York: Academic
Press.

ALESINA, A., AND E. SPOLAORE (1997): “On the Number and Size of Nations,” Quarterly Journal
of Economics, 113, 1027–1056.

ANDERSON, G. (1996): “Nonparametric Tests of Stochastic Dominance in Income Distributions,”
Econometrica, 64, 1183–1193.

BEACH, C., AND R. DAVIDSON (1983): “Distribution-Free Statistical Inference with Lorenz
Curves and Income Shares,” Review of Economic Studies, 50, 723–735.

BEACH, C., AND J. RICHMOND (1985): “Joint Confidence Intervals for Income Shares and
Lorenz,” International Economic Review, 26, 439–450.

BISHOP, J. A., S. CHAKRABORTI, AND P. D. THISTLE (1989): “Asymptotically Distribution-Free
Statistical Inference for Generalized Lorenz Curves,” The Review of Economics and Statistics,
71, 725–727.

CHAKRAVARTY, S. R., AND A. MAJUMDER (2001): “Inequality, Polarization and Welfare: Theory
and Applications,” Australian Economic Papers, 40, 1–13.

COLLIER, P., AND A. HOEFFLER (2001): “Greed and Grievance in Civil War,” Mimeo, World
Bank.

D’AMBROSIO, C., AND E. WOLFF (2001): “Is Wealth Becoming More Polarized in the United
States?” Working Paper 330, Levy Economics Institute, Bard College.

DAVIDSON, R., AND J. Y. DUCLOS (1997): “Statistical Inference for the Measurement of the
Incidence of Taxes and Transfers,” Econometrica, 65, 1453–1465.

(2000): “Statistical Inference for Stochastic Dominance and for the Measurement of
Poverty and Inequality,” Econometrica, 68, 1435–1465.

DUCLOS, J. Y., J. ESTEBAN, AND D. RAY (2003): “Polarization: Concepts, Measurement, Estima-
tion,” Mimeo, http://www.econ.nyu.edu/user/debraj/papers/DuclosEstebanRay.pdf.

ESTEBAN, J., C. GRADÍN, AND D. RAY (1998): “Extensions of a Measure of Polarization, with
an Application to the Income Distribution of Five OECD Countries,” Mimeo, Instituto de
Análisis Económico.



1772 J.-Y. DUCLOS, J. ESTEBAN, AND D. RAY

ESTEBAN, J., AND D. RAY (1991): “On the Measurement of Polarization,” Working Paper 18,
Boston University, Institute for Economic Development.

(1994): “On the Measurement of Polarization,” Econometrica, 62, 819–852.
(1999): “Conflict and Distribution,” Journal of Economic Theory, 87, 379–415.
(2001): “Collective Action and the Group Size Paradox,” American Political Science Re-

view, 95, 663–672.
FAJNZYLBER, P., D. LEDERMAN, AND N. LOAYZA (2000): “Crime and Victimization: An Eco-

nomic Perspective,” Economia, 1, 219–278.
FOSTER, J. E., AND M. C. WOLFSON (1992): “Polarization and the Decline of the Middle Class:

Canada and the U.S.,” Mimeo, Vanderbilt University.
GARCIA-MONTALVO, J., AND M. REYNAL-QUEROL (2002): “Why Ethnic Fractionalization? Po-

larization, Ethnic Conflict and Growth,” Economics and Business Working Paper No. 660, Uni-
versitat Pompeu Fabra.

GRADÍN, C. (2000): “Polarization by Sub-Populations in Spain, 1973–91,” Review of Income and
Wealth, 46, 457–474.

HÄRDLE, W. (1990): Applied Nonparametric Regression. Cambridge: Cambridge University Press.
KAKWANI, N. C. (1993): “Statistical Inference in the Measurement of Poverty,” Review of Eco-

nomics and Statistics, 75, 632–639.
KNACK, S., AND P. KEEFER (2001): “Polarization, Politics and Property Rights: Links Between

Inequality and Growth,” Mimeo, World Bank.
MILANOVIC, B. (2000): “A New Polarization Measure and Its Applications,” Mimeo, Develop-

ment Research Group, World Bank.
OLSON, M. (1965): The Logic of Collective Action. Cambridge, MA: Harvard University Press.
PAGAN, A. R., AND A. ULLAH (1999): Nonparametric Econometrics. Cambridge, MA: Cambridge

University Press.
PARETO, V. (1906): Manual of Political Economy. New York: A. M. Kelley, 1927 edition.
QUAH, D. (1996): “Twin Peaks: Growth and Convergence in Models of Distribution Dynamics,”

Economic Journal, 106, 1045–1055.
(1997): “Empirics for Growth and Distribution: Stratification, Polarization and Conver-

gence Clubs,” Journal of Economic Growth, 2, 27–59.
REYNAL-QUEROL, M. (2002): “Ethnicity, Political Systems, and Civil Wars,” Journal of Conflict

Resolution, 46, 29–54.
RODRÍGUEZ, J. G., AND R. SALAS (2002): “Extended Bi-Polarization and Inequality Measures,”

Mimeo, Universidad Complutense de Madrid.
SEN, A. (1997): On Economic Inequality (Second Ed.). Oxford: Oxford University Press and

Clarendon Press.
SILVERMAN, B. W. (1986): Density Estimation for Statistics and Data Analysis. London: Chapman

& Hall.
WANG, Y. Q., AND K. Y. TSUI (2000): “Polarization Orderings and New Classes of Polarization

Indices,” Journal of Public Economic Theory, 2, 349–363.
WOLFSON, M. C. (1994): “When Inequalities Diverge,” American Economic Review, 84, Papers

and Proceedings, 353–358.
(1997): “Divergent Inequalities: Theory and Empirical Results,” Review of Income and

Wealth, 43, 401–421.
ZHANG, X., AND R. KANBUR (2001): “What Difference Do Polarisation Measures Make? An

Application to China,” Journal of Development Studies, 37, 85–98.


